Published at Monday, 14 September 2020. математика класс. By Fanchon Menard.
Igraya v nastol nuyu igru, ispol zuyte kolodu kart faktov. Proshche govorya, bros te kosti, nezavisimo ot togo, kakoye chislo na kubike - eto kolichestvo kartochek faktov, kotoryye neobkhodimo prochitat pered peremeshcheniyem. Problema na odnoy karte, otvet na drugoy. Bud te ostorozhny, chtoby ne poluchit slishkom mnogo problem s odnim i tem zhe otvetom. V etoy igre na pamyat dolzhno byt okolo 10-15 zadach, vsego 20-30 kart. Eto privodit k igre v to, chto my ranshe nazyvali voynoy. Otvet beret na sebya problemu. Dobavte vtoroy ili tretiy nabor, chtoby bylo mnogo problem i otvetov, chtoby sdelat yego interesnym. Drugoy variant - imet tolko zadachi, kartochek otvetov net, i kartochki prinimayutsya za samyy vysokiy otvet.
Vsegda chitayte formuly kak zakonchennyye mysli ili predlozheniya. Formuly vsegda dolzhny imet znak ravenstva. Takim obrazom, formula dlya rasstoyaniya NE rt. Formula dlya rasstoyaniya d = rt. Vsegda proveryayte pravil nost formul. Naprimer: raznitsa dvukh polnykh kvadratov mozhet vyglyadet kak 25-4. Ochevidno, znacheniye etogo chisla ravno 21, no yesli my poluchim eto zhe znacheniye s pomoshchyu formuly, my proverim formulu. Po formule 25-4 mozhno bylo by zapisat kak 5 ^ 2-2 ^ 2 i razlozhit na mnozhiteli kak (5 + 2) (5-2) = 7 (3) = 21. Takim obrazom, formula proverena. Znayte, kak oboznachat otvety po formule i chto oni oznachayut. Bud te konkretny pri chtenii formul. Poskol ku vse formuly ploshchadi nachinayutsya s A =, boleye polezno dobavit dopolnitelnuyu informatsiyu. V A = (pi) r ^ 2 luchshe vsego chitat eto tak: «Ploshchad kruga ravna pi, umnozhennomu na kvadrat radiusa kruga». Obyazatelno pomnite, chto ploshchad vsegda izmeryayetsya v kvadratnykh yedinitsakh.
No v kakikh imenno situatsiyakh ucheniku sleduyet propustit urok matematiki? Na etot vopros mozhet byt slozhno otvetit, potomu chto resheniye o tom, gotov li uchenik propustit tselyy god po matematike, zavisit ot sposobnosti opredelit uroven komforta etogo uchenika s matematicheskimi kontseptsiyami za ves god na osnove vsego odnogo provedennogo testa. v nachale goda. Yesli, gipoteticheski govorya, u uchenikov prosto «udachnyy den, i im udalos otvetit na neskol ko voprosov, v kotorykh on ili ona ne byl polnost yu uveren, uchenik mog by v konechnom itoge popast v boleye prodvinutyy klass, chem on ili ona mogli by ne byt gotovym k. I naoborot, u umnogo uchenika mozhet byt plokhoy den, i v itoge on potratit god na izucheniye togo, chto on ili ona deystvitel no uzhe znayet.
Home ∶ About Us ∶ Contact ∶ Privacy ∶ Cookies ∶ Terms of Use ∶ Copyright
Any content, trademark’s, or other material that might be found on the Planoism website that is not Planoism’s property remains the copyright of its respective owner/s. In no way does Planoism claim ownership or responsibility for such items, and you should seek legal consent for any use of such materials from its owner.
Copyright © 2021 Planoism. All Rights Reserved.
Leave a Reply